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Theoretical analysis of the formation of membrane microtubes on axially strained vesicles
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The formation of membrane microtubésther$ was analyzed by a theoretical study of the shape changes
of an axisymmetrical phospholipid vesicle caused by a pulling axial force applied at the vesicle poles. Equi-
librium vesicle shapes were obtained by variationally seeking the minimum of the sum of membrane local and
nonlocal bending energies at constant vesicle volume, membrane area, and the distance between the vesicle
poles. The effect of axial force on vesicle shapes was studied by examining the shape behavior of prolate
axisymmetrical vesicles with equatorial mirror symmetry. For a vesicle with a given relative volume, the
resulting shapes reside within a given region of the phase diagram for this vesicle as a function of the distance
between vesicle poles and the relative difference between the areas of the membrane layers. The upper limit of
this region was obtained by a variational procedure for the determination of vesicle shapes that correspond, at
given vesicle volume, membrane area, and difference between the areas of membrane layers, to the maximum
distance between the vesicle poles. It was shown that for finite values of the ratio between the nonlocal and
local bending moduli, at high enough axial force the vesicle shape exhibits an elongated tubular ending at each
pole. The equation for the radius of such a tubular ending obtained by the rigorous treatment presented matches
the equation that has previously been used as an approximation in analyses of tether formation methods for the
determination of membrane bending moduli. Furthermore, it is predicted that below a certain critical value of
the ratio between the two bending moduli that depends on the vesicle volume, the shape characterized by the
tubular endings is attained, with continuously increasing the axial force, by a discontinuous shape transforma-
tion. [S1063-651X%97)05105-2

PACS numbg(s): 87.22.Bt, 82.70-y, 02.60.Lj

I. INTRODUCTION Tethers were recently used also for the determination of in-
terlayer friction[11].

Membrane microtubes, known also as tethers, are rela- The aim of this work is to contribute by a rigorous theo-
tively long cylindrical extensions of membranes of vesiclesretical treatment to the general understanding of the way in
and cells. They are frequently observed as intracellulawhich the application of a point force on a vesicle affects its
microtubule-associated membraneous tubular organdlles shape, with particular emphasis on revealing the conditions
A tubulovesicular network can be formed by membrane aswhen such a force causes the formation of a tether, i.e., a
sociated motors moving upon microtubuled, or a tether membrane microtube. Since the usual basis for analyzing
can be extracted from neuronal growth cones by applying atether behavior in the determination of membrane viscoelas-
external forcd 3]. External forces were also shown to causetic constants is to estimate the elastic energy of the vesicle
the formation of tethers from membranes of red blood celldnvolving the tether by describing the system by a simple
when these, after being adhered to a glass slide, are subjectgdometrical model for which the energies of different parts
to an overflow of liquid 4]. Tethers pulled out of a red blood of the vesicle can be easily calculatgl®], the present rig-
cell membrane do not contain a membrane skeleton and arous theoretical treatment also represents the necessary ba-
deficient in at least some integral membrane prot¢Bls  sis for justification of these approximate models and for de-
Tethers were also extracted from phospholipid vesipids  fining the limits of their possible applications. Moreover, the
which indicates that their formation could be understood ortreatment of vesicles under the influence of external forces in
the basis of the properties of phospholipid membranes.  general represents a non-trivial generalization of the ap-

The problem of tether extraction from vesicles can beproaches that were developed in the past for the determina-
viewed as a specific case of the problem of the formation ofion of the shapes of freely suspended vesifl&s. The case
the vesicle shape. The above examples suggest that we ayka vesicle strained by an axial force was hitherto not con-
dealing with the shape of the vesicle when it is strained by arsidered in detail. It has been shopi¥] that the Euler equa-
external force acting at a point. The shapes of phospholipitions that are obtained by the applying the variational prin-
vesicles are governed by the elastic properties of the closedlple to the problem of the shape of a vesicle strained by an
phospholipid membran¢7,8], and in this respect tethers axial force are identical to the Euler equations derived for an
were found to represent a suitable experimental system faaxisymmetrical vesicl§l5] from the general shape equation
studying membrane material propertj€$ They can be con- [16]. Possible solutions of the general shape equation and
veniently used for the determination of both local and non-their characterization represent a currently developing re-
local membrane bending constants, particularly since, besearch interedtl7]. In this respect the present work contrib-
cause of their small radius, the effects of bending are muchtes in describing some examples of these solutions for axi-
more pronounced in tethers than in rounded vesifl€s. symmetrical vesicles of spherical topology. The analysis
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presented also forms the proper basis for an understanding ofetrical shape of a vesicle that is strained between two point

the formation of vesicle shapes that were observed in experforces acting in opposite directions at the vesicle poles. So

ments on vesicles containing microtubule assemblies elorthe additional constraint that is important for the shape of the

gating along the vesicle axis and thus exerting force on itwesicle is the distance between the polgg)( This distance

poles[18]. can be kept constant by introducing the Lagrange multiplier
In this article the relevant contributions to the membranef, which represents the axial force. Thus the shape equation

elastic energy are presented first. Then the theoretical procéer the vesicle is obtained by minimizing the functional

dure is described for the determination of axisymmetrical

shapes of bilayer vesicles under the effect of the axial force, G=Wget+W,—uV—-ANA—-fZ,. 3

with special emphasis on the behavior of the vesicle at its

poles. It is then shown separately how to determine vesicl8ecause of recently debated controversies regarding the deri-

shapes with maximal length at a given vesicle volume, memvation of the shape equation for an axisymmetric vedicie

brane area, and difference between the areas of membrah®4,15,17,20), the procedure for obtaining it from E) is

layers. The theory is used to analyze the behavior of the classutlined in the following in some detail.

of axisymmetrical prolate cigarlike shapes involving equato- The expression for the membrane bending endigy.

rial mirror symmetry. (2)] for a given vesicle shape does not depend on the vesicle
size. Due to this scale invariance, in the forthcoming mini-
Il. DETERMINATION OF STATIONARY SHAPES mization analysis the unit of Iength is chosen in such a way
OF AXIALLY STRAINED VESICLES that the relative membrane area equals unity= A\/47R3

) ) ) =1); thusRy= yA/4s is the radius of the sphere with the
_Itis commonly believed that the shape of a vesicle or gnemprane ared. Then the relative vesicle volume is de-
simple cell such as an erythrocyte is determined by the minigneq asy —v/47R3, the relative difference between the ar-

mum of the elastic energy of the membrane. We analyze thgas of the two membrane monolayers is definedAas

shape of a phospholipid vesicle under the assumption that tthA/Stho where 87hR, is the relative difference be-
membrane area) dogs not change. Thus the elastic ENe9%veen the areas of the two membrane monolayers for the
of a closed symmetrical bilayer composed of layers of theSphere and,=2Z,/R, is the distance between the poles in
same composition is the sum of only two terme/q ’

. h lati L relative units.
+Wp) [12], i.e., (a) the relative expansivity term It is also appropriate to measure the relative expansivity

term, the membrane bending energy, and the functi@al

K, ! . .
Wore (AA—AA)?, (1)  relative to the bending energy of the sphererk®): wge
RE™2AR? ° =Wge/87k, Wy=W,/87k;, andg=G/8k.. Thus

wherek; is the nonlocal bending moduluAA is the differ- K,

ence between the areas of the outer and the inner monolayers WRE= (Aa—Aap)?, (4)
in the deformed state and is equalld(c,+c,)dA, with ¢
¢, andc, the principal curvatures ardthe distance between
the neutral surfaces of the outer and the inner monolayer, a
AA, is the corresponding equilibrium area difference, andth
(b) the bending energy term

rﬁhereAa(): AA/BmhRy is the equilibrium relative area dif-
rence. The functiondlEq. (3)] in the dimensionless form
en reads

1 g=WggtWp,—Mv—La—Fz,, 5)
sz_kcf (C1+Cp)2%dA, 2 .
2 where the new Lagrange multiplieké, L, andF are related
to u, \, andf
wherek. is the bending modulus. The spontaneous curvature
in the bending energy terfd9] was taken to be zero because R3 R3 R,
we are considering a symmetrical bilayer membrane. Also, M= P L= CTR N, F= k. f. (6)
C C C

we only consider vesicles with spherical topology and there-
fore the contribution of the Gaussian bending term to the . . . .
. . . . It is convenient to minimize the functiongl separately
bending energy is constant and is thus omitted. . ; :
L ; , with respect toAa and for a givenAa with respect to the
The minima of elastic energy correspond to stationary

shapes of the vesicle, so the problem is to find the extrem esmle_shape. The minimization of funct_lprg_ai/vlth respect
0 Aa is performed as follows. At equilibrium the partial

values of the membrane elastic energy. The shape of a flac: =~ . : . ;
cid vesicle is obtained from the minimum &ffge+ Wi, derivative of the functionag with respect to the relative area

where the membrane area is fixed. During the minimizationdncference equals zero. This requirement leads to

procedure we also take into account that the volume of the
vesicle (V) is fixed because of the incompressibility of water = =
and the low water transmembrane transport. The constraints dAa ‘eq dAa| eq dAa‘eq
in volume and area can be incorporated in the energy mini-

mization by introducing the Lagrange multiplietsand\,  where the fact thatvge depends only oma is used. By
which represent the pressure difference across the membranensidering the equation for the relative expansivity energy
and the lateral tension. We wish to determine the axisym{Eqg. (4)] one immediately obtains the equation

d(Wp+Wgg)|  dwy|  dweg

0, )
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AW, K, Because the variation of the functiondq. (10)] with
TAal —2p (Aa—Aay), (8)  respect to all independent variables along the contour has to
eq ¢ vanish (¢g=0), one obtains differential equations
which represents the condition for equilibrium. This equilib- . sing

rium condition[Eq. (8)] is the same as for the case of no Yr= ; — yt —3Mr2cosy—4F cosy+4T siny,
axial force[21,27.

The variation of the functiona with respect to the
vesicle shape is performed by defining as a new variable 1.
N, the partial derivative of the relative bending energy with == (lpz
respect to the relative area differencli=dw;,/dAaley). 8
From Eq.(7) it follows that N represents the relative lateral
tension between the monolayers:

(12

sify\ 3Mrsing L Ny
2 )_ 2 2 a0 B

r=cosy, (14)

and conditions
dwgg

N=——— . 9 "
daaf Hds|y =0, (15

Because the relative expansivity termgg) depends only on i . o
the relative area difference\@), the arbitrary variation of 7 T+ sing—Nr)dylg =0, (16)
the relative expansivity term also depends only on the varia-
tion of the relative area differenced\Wge= dAadwgg/ Fb‘rls* -0 17)
dAale). After using Eq.(9) the variation of the relative 0 '
expansivity term fwrg) reads—NJSAa. where

An axisymmetrical surface can be conveniently param-
etrized in relative units by the coordinateés) and z(s) r{, sirfy\ 3Mr2sing  Lr N sinyg
[20], wherer is the distance between the symmetry axis and H= 8 ( e 4 TSt 2
a certain point on the contouwz,is the position of this point
along the symmetry axis, arslis the arclength along the +1I" cosf+F siny (18
contour. The angle of the contoys) is defined through the o ) S
equation tany=dzdr, so the coordinates andz depend on |s_the Hamﬂtoman function. The conto_ur of a vesicle is ob-
the angley through the equations=cosy and z=siny,  t@ined by solving Eqs(12)—(14). Equations(15)—(17) rep-
where the overdot denotes the derivative with respect to thEeSent the boundary conditions that have to be fulfilled at the
arclengths. The angleys and coordinate are taken as two Pe€ginning 6=0) and at the ends=s*) of the contouf20].
independent variables and the restriction for the geometricdgecause the lengthst) is not fixed (5S|s*_¢o) andH is
relation between them is considered by a new Lagrange mugonstant, Eq(15) shows thatH=0. Equation(16) shows
tiplier T'(s), which represents the component of the transthat #=0 on the axis. This means that the vesicles are
verse shear fordgl1] in the radial direction. The variation of Smooth at the poles. Because the coordimatguals zero at

the functionaly can then be expressed for an axisymmetricathe beginning and at the end of the contgu(0)=r(s*)
vesicle as =0], Eqg.(17) is automatically fulfilled on the axis.

In order to solve the differential equations the behavior of
& the contour, i.e., the dependence of the angtn r close to
og= 5[ L ds, (100 the symmetry axis, has to be investigated. For this it is con-
0 venient to eliminatd” ands from the differential equations
[20]. This is done by first rewriting Eq.(12 as I’
=TI'(¢, ¢, ,r) and then inserting the expression obtained for
I" into expression{18) for H=0, which gives the equation of

where L is the Lagrange function

; 2 2ai ; )
! (ﬂJr , ) -M 3rsing o r M the contour in the formy= (44, ¢,r). Then the arclength
8l 4 2 4 s is eliminated by considering E§14), and the shape equa-
—F sing+T'(f — cosp) (11) tion appears in the form
" 20

ands* is the length of the contour. The bending energy term e L
in the functional[Eq. (10)] [wy= 33 r (sin y/r +y)2dg in- _ 1 [sing [sinfy 2002y | — BM
cludes the principal curvatures along the parallels (g S 2cody | r r2 v 4
and. the mer|d.|ansl;(). The geometrslcgl pz)a.ramete.rs of the siny sirfy) 1 ycosy  sing
vesicle are given by integralsv =3[ r<sinds is the —4L T_ZN r_2_8F 2|~ 7 )
relative volume of the vesiclea:%fg*r ds is the relative 19

area of the vesicleAa= %fg*r(sin Ylr+)dsis the relative

area difference, anﬂozfg* sin ¢ dsis the distance between where the prime denotes the derivative with respect to the
the poles, respectively. coordinater. [The same equation fo&f=0 was presented by
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Zheng and Liu[23], who showed that Eq(19) is also the - 3Mr2sing Lr Nsing ~

first integral of the general shape equat[d®] for the axi- H=—sing+ T+ 7+ 7 +I' cosy
symmetrical casgl5] with F an integration constartln the 28)

limit r—0 the solution of Eq(19) has the form 14]

C(—2F | B 20 is the Hamiltonian function for this case. Becaubdoes not
y=(= nr+B)r, (20 explicitly depend on the arclengy the Hamiltonian func-

whereB is a constant. In the absence of the axial force thé'on. IS constant. Since the variation gf with resp_ect to
constantB represents the value of the two principal curva—"‘"‘”f"ltIon of the cgntour Iength. thhe two end points must
tures on the vesicle polé8]. In the procedure for obtaining Vanish, one obtains the conditidd(s*)=0. Because the
the vesicle shape the valuesMf, L, N, F, andB are found Hamiltonian function is constant along the contour, it fol-
to fulfill the conditions of the chosen, a, Aa,, andz, and  lows thatH=0.
to fulfill the condition that the transverse shear fof&g at To simplify the numerical calculations, we can obtain an
the equator equals zero due to the mirror symmetry of thequation in a form without the Lagrange multipliEr First
vesicle shape. Eq. (25) is rewritten asI'=T'(¢,r). This expression fol’
gives, together wittH=0 [Eq. (28)],
IIIl. LIMITING SHAPES _ _ _
_ _ _ _ 3Mr2+2Lr sing+N sirfy—4=0. (29
The question of the maximal length of a vesicle with

given volume, area, and area difference may be posed. Mhe contour of a limiting vesicle is obtained by solving Eq.
dimensionless representation, this means that we are lookingg). On the poles, where=0, one obtains
for the shape with the extremal distance between the poles
(zg) under the conditions that the relative areg quals
one and that the relative volume)( and the relative area
difference (Aa) are fixed. The maximal distance corresponds
to an infinitely large axial force. We thus study the dimen-

sifyo==, (30

2l

sionless functional

J=2o—Mv—La—NAa, (22)
where the Lagrange muItipIielﬁ ,E,N are

~ dz
N—m. (22

dzy
da’

_ dz0 _
M= -

The functionalg can be expressed for an axisymmetrical

vesicle as

= FZ ds, (23)

0

whereZ is the Lagrange function

2 ; )
L=siny—M srsig ¢ %—N —SIWZ v +T(i — cosp).
(24)

The requirement for the geometrical relation betweem
r is considered by the Lagrange multiplier

Because the variation of the functiori@g. (23)] at equi-
librium has to be zero, we obtain the equations

cosp—EMr2coss+T sing=0, (25)

=~ 3Mr sings L Nip

F+T+§+T—O, (26)
I =cosy. (27

and the boundary conditior§55|8*=0, (Nr/4)6¢|8*=0,
andT'sr|$ =0, where

where ¢y, is the angle of the contour on the symmetry axis.
Equation(30) shows that the limiting vesicle shapes are not
smooth at the poles ard must be greater than or equal to 4
because there are no solutions that begin on the aisisf
lower than 4. Equatiort30) also shows that the contour of
the limiting vesicle shape begins with the same angjeon

both poles. It can easily be seen from E2f) thatI is zero

on the equator, as it has to be because of the mirror symme-
try of the limiting vesicle shapes.

IV. RESULTS

The results presented are restricted to vesicles belonging
to a class of axisymmetrical prolate cigarlike shapes involv-
ing equatorial mirror symmetry. A systematic description of
vesicle shapes under the effect of an axial force for other
shape classes will be presented separately.

An increase in axial force in general causes an elongation
of the vesicle and a change of the relative membrane area
difference. Thus it is practical to represent vesicles of a given
relative volume in a two-dimensional phase diagram as a
function of the distance between the poles and the relative
area differencézy-Aa phase diagrain In Fig. 1 the region
of the zy-Aa phase diagram is shown for a vesicle with a
relative volume of 0.95 in the range of relative area differ-
ences where axisymmetrical prolate shapes with equatorial
mirror symmetry exist in the absence of the axial force. Each
point from this region is characterized by the corresponding
Lagrange multipliersv,L,F and the relative lateral tension
between the monolayers\j. The region is bounded from
below by the curvgdenoted byP) representing the lowest
bending energy shapes of the prescribed symmetry when the
axial force is equal to zero. These cigar class shapes exist
within the interval of values of the area differencAd),
where the shape with the smallest area difference is com-
posed of a cylinder with two hemispherical caphapeg in
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(] b ¢
FIG. 1. Thez,-Aa phase diagram for prolate axisymmetrical d 8 i

shapes with equatorial mirror symmetry strained by an axial force
for a vesicle with the relative volume=0.95. The curve desig-

nated byP shows the dependence of the distance between the poles
in relative units g,) on the relative area differencé\ &) for the
prolate vesicles of the cigar class in the absence of the force. Some
representatives of vesiclédenoted byg, h, i, andj) that belong to
this curve are depicted in Fig. 2. The curve designatetMbshows
the dependence of the maximal distance between the poles on the
0 h i i

relative area difference for the prolate vesicles. Some limiting

shapegdenoted byg, a, b, andc) from this curve are depicted in

Fig. 2. The dotted line is aha,=1.1134. Curves designated by

Qo, Qu, Qup, andQ gy show the distance between the poles as a FIG. 2. Characteristic examples of axisymmetrical shapes with

function of the relative area difference for the vesicles with the ratioequatorial mirror symmetry at relative volunse=0.95. The posi-

between the nonlocal bending modulus and the bending modulugon of each of these shapes in theAa phase diagram is indicated

k. /k,=0, 4, 40, and 400. The curveéd,, Q4, Q4o, andQ,q are  in Fig. 1. The vesicle rotational symmetry axis is in the vertical

obtained by solving Eqg12)—(14) and (8) for different values of  direction. The shapes denoted gyh, i, andj correspond to pro-

the axial force where the equilibrium area differenckag) is late vesicles of the cigar class in the absence of the force. The

1.0221. They begin on curve (shapeh), whereAa=Aa,, and shapes denoted by, e, andf are representatives of the vesicles

they end where numerical problems appear. Some examples of thbat lie in Fig. 1 on the curve designated @y. The contours of the

shapes that are on the curve designate@pydenoted byd, e, and  vesicles denoted bg, e, f, g, h, i, andj are obtained by solving

f ) are depicted in Fig. 2. the system of differential equatiof&qgs. (12)—(14)]. The param-
eters of these vesicles are given in Table I. The contours of the

Fig. 2 and the shape with the largest area difference is theesicles denoted bg, b, andc are obtained by solving Eq29)

combination of one large and two small sphe(sisapej). and the vesicles with these shapes are characterized in Table Il. The

Two intermediate zero force shapes are also shown in Fig. shaped, e, andi are atAa,=1.1134.

(shapesh andi). The shape denoted Ilbycorresponds to the

absolute minimum of bending energy. The parameters ofgngth of the limiting vesicle shape whetde,/dAa=4. The

these shapes are given in Table |. The culein Fig. 1 yegyjt presented can be considered as the upper (iriid

represents the shapes corresponding to an infinite force. F‘é&actly for h/Ry—0) for the distance between the poles

v=0.95 the infinite force shape a@a=1.0219 coincides (z ; - .
. B . o) at a given relative area differencé4) [24]. The pa-
with the shape foF =0 (shapeg), as this shape cannot be rameters for different limiting shapes are given in Table II.

deformed. At hlghelAa \_/alues the angle of the_contour N The limiting shapegcurve M) of vesicles represent the
the symmetry axis i) increasegshapea), until at Aay - Lo g .
11134 it hes th lue2 (shaneb) whereN I limit for an infinitely large axial force applied on the prolate
Z (fable III) r_?_ﬁg Iier?]itine Vsaha es(ztahF; hg’; \e/;?uese?jlijf?esr vesicles(curve P) by keeping the relative area difference
' g shap ghe ; constant k, /k.=). As an example of the effect of the
from the shape aka, by having on the axis on both sides an __. L
axial force one can note the shapes along the dotted line in

gf:;:cs)lmﬁgz]éwn if%lllznge:hzfsﬁﬂg;hn (QJLEaEq(AZZ)b)fo(retﬁé Fig. 1 (shapes, e, andb), which have the same area differ-
D 7 . ence. It can be seen that the distance between the poles for
infinitely thin cylinder is : . . : )
these shapes increases on increasing the relative axial force.
. Shapee is similar to shapdy except close to the poles.
r=0, ¢=5. (31) For phospholipid vesicles the estimated ratio between the
nonlocal and local bending moduli is finit&0] and therefore
The infinitely thin cylinder has no volume and no area. Itit is of interest to follow the vesicle shape changes by taking
contributes only to the relative area difference and to thénto consideration that the elastic energy is the sum of the
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TABLE |. Properties of the vesicles that are presented in Fig. 2, wherés the relative area difference between the two membrane
monolayersz, is the distance between the poles in relative umitss the relative radius of the vesicle on the equaBbis the parameter
that denotes the behavior of the contour close to the ede (20)], M is the relative pressure difference across the membitarng the
relative lateral tension of the membraméjs the relative lateral tension between the monolayers,Faigdthe axial force in relative units.

Shape Aa Zy le B M L N F

d 1.0670 3.106 0.908 —8.364 43.665 —68.917 —0.359 4.433
e 1.1134 3.240 0.918 —7.278 52.241 —81.560 —0.730 4.644
f 1.1668 3.387 0.926 —9.565 65.539 —101.497 —1.158 5.184
g 1.0219 2.465 0.811 1.233 —® s —® 0

h 1.0221 2.593 0.829 1.490 —1.882 2.682 0 0

i 1.1134 2.901 0.973 9.078 9.558 —17.866 7.629 0

j 1.2535 2.507 0.981 7.348 20.7 —34.9 8.35 0

local and nonlocal bending terniEgs. (2) and(1)]. As an  discontinuous shape transition below a certain relative vol-
example we look for the effect of the axial force on theume.

vesicle with the equilibrium relative area differencid(), The Lagrange multipliers that represent the pressure dif-
corresponding to the shapein Fig. 1, i.e., the shape with ference across the membrane, the lateral tension, the relative
the absolute bending energy minimum in the case of a zertateral tension between the monolayers, and the axial force
axial force. For this case the relative area difference equalsteeply increase when a tether is elongated. If the Lagrange
the equilibrium relative area difference. Figure 1 shows themultipliers are sufficiently large, an estimate of the relative
curves(Qg, Q4, Quo, andQ,qp in thezy-Aa phase diagram radius of the tetherr() could be given, because on the sec-
of shape changes due to the increase of axial force for fouion of the tether where)~ /2 the first derivative of the
different values of the rati&, /k. (0, 4, 40, and 400 Some angle ¢ with respect to the arclengts is almost zero
examples of the corresponding shapes that lie on the curvgy~0). One obtains from Eq(18)

for k, /k.=4 are also shown in Fig. &haped, d, e, and

f ). The tubular endings at the poles of shapemndf show 1 3Mrt2 Lr,
the formation of tethers. - —

In Fig. 3 the dependence of the distance between the poles
on the applied axial force when straining the vesicle with the
initial shapeh is presented. It can be noted that at smallerand from Eq.(13)
values of the ratiok, /k. there is a steep increase in the
distance between the poles in the region of the shape changes 1 3Mrp L

; ; . — + +==0. (33
where the vesicle begins to form the tetliiee., from shape 8r? 2 2
d to shapee for k, /k.=4). For the relative volume 0.95 at
values where the rgtibrlkc is smaller .than_the critical ratio  pger eliminatingL from Egs.(32) and(33) we have
(k; /kc)=1.89, a discontinuous transition into tether confor-
mation is predicted. The value of the critical axial force in
relative units £.), which corresponds to this critical ratio, is
equal to 4.47.

The value of the critical ratio between nonlocal and localFor the shape denoted lythe product 3/r{ is equal to
bending moduli (k, /k.).] and the value of the correspond- 0.039, the produchr; is equal to—0.046, and the product
ing critical axial force £.) depend on the relative volume 4Fr, is equal to 1.17. The produdf r¥ decreases with in-
(Fig. 4). It may be seen from Fig.(d) that at higher relative creasing relative axial force for the vesicle with the certain
volumes a discontinuous shape transition occurs at higheatio k, /k.. Because for the elongated tether the product
values of the ratid, /k.. It can also be sedfFig. 4(b)] that Mrf is much smaller thahr,+4Fr,—1, after using Eq(8)
the critical axial force E.) increases with the relative vol- the radius of the tetherR;=Rgr;) can be approximated in
ume. The dependence &, (k;). onv shows that there is no dimensional form by the equation

N
8_I'»[+T+ 2 +Z+F=O (32)

—3Mr3—1+Nr+4Fr=0. (34)

TABLE II. Properties of the limiting vesicles that are presented in Fig. 2, wikaxds the relative area difference between the two
membrane monolayergy is the distance between the poles in relative unitsis the relative radius of the vesicle on the equator, and

o is the angle of the contour on the poles. The Lagrange multiplieiis,N are defined through Eq§22).

Shape Aa Z e o M L N

a 1.0670 3.166 0.895 1.243 —6.486 8.444 4.463
b 1.1134 3.357 0.898 /2 —7.050 9.498 4

C 1.2535 3.917 0.898 /2 —7.050 9.498 4

g 1.0219 2.465 0.811 0 0 —© 0
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r 27ch+ 27k, (AA—AAy)

R, Ah f=0. (35

This equation predicts the same radius for the tether as the
equation for the tether equilibrium of the simple geometrical
model (Eq. 21 of Ref[12)).

V. DISCUSSION

The variety of vesicle shapes obtained under the condi-
tions of the applied axial force is discussed first in relation to
the variety of shapes of freely suspended flaccid phospho-
lipid vesicles or structurally related cells. A large variety of

F shapes within different symmetry classes has already been
found in the latter casE7,8,25. Under the influence of the

FIG. 3. Distance between the poles in relative ung) @s a  external axial force the shape variety greatly increases. A
function of the relative axial forceR) where the curves deS|gnat_ed demonstration of this is the phase diagram for the class of
by Qo. Q4. Qao, Qaoo, @nd Q.. show the dependences for five a6 axisymmetrical shapes exhibiting equatorial mirror
dn‘ferept values of the ratio between the noqlpcgl and Iogal bendin ymmetry, as a function of distance between the vesicle
m.Odu“(kf/kC:O’ 4, 40, 400, anh). The equ'"b”u.m relative area poles and the area difference presented in Fig. 1. In this
difference of the two membrane monolayetsag) is 1.0221. The . .
curves fork, /k,—0, 4, and 40 are the most inclined closezip phase diagram the shapes for the case of zero force.are pplnts
=3.2, where the tether appears. The lettersl, e, andf indicate on a curve(curveP), Whereas. the ShapeS under. applied axial
the positions of the vesicle shapes that are depicted in Fig. 2. FJprceS correqund to the points within a _certaln area of the
k, /k,=o (curve designated b@..) the maximal distance between Zo-A@ phase diagram bounded on two sides by the curves
the poles exists at,=2.630(dotted ling. P andM. In both cases the shapes are solutions of the gen-
eralized shape equati¢i6]; however, these solutions differ
in their behavior at the poles. In the case of a nonzero force
the principal curvatures at the poles depend logarithmically
on the distance from the axigsee [14] and Eg. (20)],
whereas in the case of a freely suspended vesicle the shape
i @ behavior in the poles is normal, giving rise to the require-

- ment that the two principal curvatures are always finite and
equal[8]. The different extent of the shape variety can thus

L be directly related to the different restrictions in the bound-
ary condition on the axis.

By By following up the shape transformations under the ef-
0.92 0.94 0.96 0.98 10 fect of the axial force it is possible to envisage why tethers
are formed. The vesicle shapes under the effect of the axial
force are governed, on the one hand, by the tendency of the
system to be as elongated as possible and, on the other hand,
by the opposing tendencies due to the constraints on the
constant vesicle area and volume. The dependence of the
distance between the poles on the axial force determined for
5 a reasonable value of the ratio between the bending moduli
L (curveQ, in Fig. J reveals two regimes with regard to the
response of the vesicle to the axial force. At relatively low
values of the forcebefore reaching shap) a vesicle can
adjust to the strain by changing its shape over its whole

o — N W e
T

Ir surface, whereas at larger fordgdter reaching shape) the
- vesicle can further adapt only by forming tethers, by which
? | ! ! S the distance between the poles can increase the most by tak-
0.92 0.94 0.96 0.98 1.0 ing into the tethers the minimum possible amount of the
" vesicle interior and membrane area. A tether is an almost

cylindrical section of the vesicle where the distance between
FIG. 4. () Dependence of the critical ratio between the elasticth® membrane and the symmetry axis is practically constant.
constantg (k, /k.).] on the relative vesicle volumeJ. There is a After a tetherlike conformation is established, a further
discontinuous transition in vesicle shape for the vesicles that lidncrease of axial force causes elongation of the tethers and a
below the curve. The curve ends at relative volume 0.966, wher@ecrease in their radiEq. (34)]. The longer the tethers, the
numerical problems appeaib) Corresponding dependence of the more membrane material than water drawn from the main
critical axial force F.). vesicle body to such thin tethers. Thus, for a large axial force



55 THEORETICAL ANALYSIS OF THE FORMATION G- . .. 5841

v:091 spect to distance between the poles in relative units equals
095 7 . The value of this derivative, which is the same as for the
0.99 limiting vesicle shape with infinitely thin tethefsurveM in
0.999 Fig. 1 for Aa>Aay), does not depend on the ratip/k..

This means that at large axial forces the lines that represent
the dependence of the distance between the poles on the
relative area difference for different ratis/k. are parallel

to the line of the corresponding dependence for the limiting
shape. The higher the ratig /k;, the closer the line for the
dependence of the distance between the poles on the relative
area difference to the line for the corresponding dependence
of the limiting shape. For any finite ratig /k. the limiting
shape with infinitely thin tethers is never reached because the
bending energy of such tethers is infinitely large.

When tether conformation is established, vesicle length-
ening is essentially resisted by the contributions to the elastic
energy of the tether sections of the vesicle. This was a basic

FIG. 5. Examples of the limiting shapesfor the different rela-  assumption in the approximate analysis of the tether pulling
tive volumesyv =0.91, 0.95, 0.99, and 0.999. These shapes correexperiment[12,10,11, where the shape of the tether was
spond to the limiting vesicle shapes of the main vesicle body agpproximated by a cylinder. The present analysis shows that
infinitely large axial force. The rotational symmetry axis is in the the magnitudes of the axial forces are related to the tether
vertical direction. The contours of the main vesicle bodies are obyadius in the same manngEq. (35)] as was already pre-
tained by solving Eq(29) for N=4. dicted on the basis of simple tether modglg]. This result

thus justifies the use of simple geometrical tether models in

the analysis of equilibrium tether experiments.
the pressure difference across the membrane, the lateral ten- In this work the question of the stability of the calculated
sion, and the relative lateral tension between the monolayershapes of the treated shape class was not addressed system-
increase very much. Because the Lagrange multipliers atically. It was tacitly assumed that the shapes calculated at
M, L, andN steeply increase, the solutions of the differen-given relative volume, relative area difference, and distance
tial equation for the vesicle shapggqg. (19)] in the limit  between the poles are the lowest-energy shapes of the treated
F,M,L,N—c correspond to solutions of the differential symmetry, which is a generalization of the case of zero ex-
equation for the limiting vesicle shapggqg. (29)], and the ternal force. The problem of stability is a relevant problem in
shape of the vesicle can be determined by integrating thigiew of the fact that in the case of zero force the cigar class
equation. Consequently, the shape of the main body of ahapes foAa values larger than 1.0222 are unstable, having
vesicle is expected to become similar to the limiting shapdarger energies than the shapes with no equatorial mirror
b (Figs. 1 and 2throughout the whole region of space where symmetry{25,26. However, at least some of the shapes with
tethers are formed. This notion can be visualized by compamirror equatorial symmetry are also relevant at nonzero
ing shapese and b in Fig. 2. However, at larger tether force, which is substantiated by observations of axially
lengths, the tether fraction of the membrane area may bestrained vesiclegl8]. It is to be pointed out that the present
come significant relative to the total membrane area, mearanalysis revealed a different type of instability within the
ing that effectively the shape of the main body would tend totreated class, i.e., the regions of instability at smaller ratios
assume the shage corresponding to a higher relative vol- of k,/k., as evidenced by the result presented in Fig. 3.
ume. The limiting shapéds for different relative volumes are The material constant that essentially affects the behavior
shown in Fig. 5. It can be visualized that at high enoughof axially strained phospholipid vesicles appears to be the
tether lengths the shape of the vesicle main body would atratio between the nonlocal and local bending constants
tain a spherical aspect. The radius of the vesicle on the equé; /k.. The ratio k,/k. depends on the sort of lipid
tor increases on increasing the axial fofcé shapes and and on the number of layers in the membrane. The ratio
f in Table Il). At an infinitely large axial force the radius of k./k. obtained for a mixture of 1-stearoyl-2-
the main vesicle body on the equator is equal to the radius oeleoyl-phosphatidylcholine  and 1-palmitoyl-2-oleoyl-
the equator of the corresponding shdpe phosphatidylserine was approximately1®]. This value ap-

For a large axial force the relative area difference is proplies to unilamellar membranes. For multilamellar phospho-
portional to the distance between the poles since the contrlipid vesicles the ratik, /k, can be considerably larger than
bution of the membrane on the tether section to the arefor a bilayer[27].
difference depends only on the tether length. Because at At sufficiently low values of the ratidk, /k, a definite
large axial forces there are only slight changes in the shapehange into the tether regime occurs in a small interval of
of the main vesicle body, also the membrane area differenctorces(Fig. 3). It is of particular interest that there is a dis-
of the main vesicle body and the length of the main vesiclecontinuous transition of the shape from the pretether to the
body are almost constant. Thus, when the distance betwedeather conformation below the critical ratio kf/k., which
the poles increases by the lengthening of the tethers, the totil of the same order of magnitude as the measured value
area difference is proportional to the distance between thEgLO]. The critical ratiok, /k. is smaller for smaller relative
poles. The derivative of the relative area difference with revvolumes (Fig. 4 meaning that more flaccid vesicles can
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adapt to the force by shape changes over their whole surface The results presented may have relevance in some cellular
more easily. The critical rati, /k. increases with increas- processes. The force exerted by a single kinesin molecule is
ing relative volume of the vesicle, but also the correspondingapproximately 5 pN28]. The forces needed for pulling the
relative forces at which the discontinuous transitions occutether are of the same order of magnitude, which indicates
are larger. The predicted dependence of the critical ratidhat the formation of tubular cellular systems may actually be
k, /k; on relative volume could provide a sensitive methodthe natural consequence of the forces exerted by cytoskeletal
for the determination of this material parameter, consistingsystems. An estimation for the minimal force needed for for-
of measuring the dependence of the vesicle length on thmation of a tether can be given from the value of the product
force at different relative vesicle volumes. For instance, fromFr, for the shape denoted by (Fig. 2), where the micro-

the results presented in Fig. 4 for the rakp/k,=4, the tubes appear. Because for this shape the value for the product
discontinuous transition of the vesicle shape is expected &Fr, is approximately 1, the force needed for tether forma-
relative volumes larger than 0.962. The relative volume ation can be given by the equation in dimensional fofm
which the discontinuities in this dependence appear would=27k,/R,. For ke~10"1°J the radius of the tether, for
provide for the ratidk, /k., whereas from the corresponding forces ) between 25 and 5 pN, ranges between 30 and 150
force one could determirie. . nm.
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