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Theoretical analysis of the formation of membrane microtubes on axially strained vesicles

Bojan Božič,1 Saša Svetina,1,2 and Boštjan Žekš1,2
1Institute of Biophysics, Medical Faculty, Lipicˇeva 2, SI-1105 Ljubljana, Slovenia

2J. Stefan Institute, Jamova 39, SI-1111 Ljubljana, Slovenia
~Received 29 May 1996; revised manuscript received 10 December 1996!

The formation of membrane microtubes~tethers! was analyzed by a theoretical study of the shape changes
of an axisymmetrical phospholipid vesicle caused by a pulling axial force applied at the vesicle poles. Equi-
librium vesicle shapes were obtained by variationally seeking the minimum of the sum of membrane local and
nonlocal bending energies at constant vesicle volume, membrane area, and the distance between the vesicle
poles. The effect of axial force on vesicle shapes was studied by examining the shape behavior of prolate
axisymmetrical vesicles with equatorial mirror symmetry. For a vesicle with a given relative volume, the
resulting shapes reside within a given region of the phase diagram for this vesicle as a function of the distance
between vesicle poles and the relative difference between the areas of the membrane layers. The upper limit of
this region was obtained by a variational procedure for the determination of vesicle shapes that correspond, at
given vesicle volume, membrane area, and difference between the areas of membrane layers, to the maximum
distance between the vesicle poles. It was shown that for finite values of the ratio between the nonlocal and
local bending moduli, at high enough axial force the vesicle shape exhibits an elongated tubular ending at each
pole. The equation for the radius of such a tubular ending obtained by the rigorous treatment presented matches
the equation that has previously been used as an approximation in analyses of tether formation methods for the
determination of membrane bending moduli. Furthermore, it is predicted that below a certain critical value of
the ratio between the two bending moduli that depends on the vesicle volume, the shape characterized by the
tubular endings is attained, with continuously increasing the axial force, by a discontinuous shape transforma-
tion. @S1063-651X~97!05105-2#

PACS number~s!: 87.22.Bt, 82.70.2y, 02.60.Lj
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I. INTRODUCTION

Membrane microtubes, known also as tethers, are r
tively long cylindrical extensions of membranes of vesic
and cells. They are frequently observed as intracellu
microtubule-associated membraneous tubular organelles@1#.
A tubulovesicular network can be formed by membrane
sociated motors moving upon microtubules@2#, or a tether
can be extracted from neuronal growth cones by applying
external force@3#. External forces were also shown to cau
the formation of tethers from membranes of red blood c
when these, after being adhered to a glass slide, are subj
to an overflow of liquid@4#. Tethers pulled out of a red bloo
cell membrane do not contain a membrane skeleton and
deficient in at least some integral membrane proteins@5#.
Tethers were also extracted from phospholipid vesicles@6#,
which indicates that their formation could be understood
the basis of the properties of phospholipid membranes.

The problem of tether extraction from vesicles can
viewed as a specific case of the problem of the formation
the vesicle shape. The above examples suggest that w
dealing with the shape of the vesicle when it is strained by
external force acting at a point. The shapes of phosphol
vesicles are governed by the elastic properties of the clo
phospholipid membrane@7,8#, and in this respect tether
were found to represent a suitable experimental system
studying membrane material properties@9#. They can be con-
veniently used for the determination of both local and no
local membrane bending constants, particularly since,
cause of their small radius, the effects of bending are m
more pronounced in tethers than in rounded vesicles@10#.
551063-651X/97/55~5!/5834~9!/$10.00
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Tethers were recently used also for the determination of
terlayer friction@11#.

The aim of this work is to contribute by a rigorous the
retical treatment to the general understanding of the way
which the application of a point force on a vesicle affects
shape, with particular emphasis on revealing the conditi
when such a force causes the formation of a tether, i.e
membrane microtube. Since the usual basis for analyz
tether behavior in the determination of membrane viscoe
tic constants is to estimate the elastic energy of the ves
involving the tether by describing the system by a sim
geometrical model for which the energies of different pa
of the vesicle can be easily calculated@12#, the present rig-
orous theoretical treatment also represents the necessar
sis for justification of these approximate models and for
fining the limits of their possible applications. Moreover, t
treatment of vesicles under the influence of external force
general represents a non-trivial generalization of the
proaches that were developed in the past for the determ
tion of the shapes of freely suspended vesicles@13#. The case
of a vesicle strained by an axial force was hitherto not c
sidered in detail. It has been shown@14# that the Euler equa-
tions that are obtained by the applying the variational pr
ciple to the problem of the shape of a vesicle strained by
axial force are identical to the Euler equations derived for
axisymmetrical vesicle@15# from the general shape equatio
@16#. Possible solutions of the general shape equation
their characterization represent a currently developing
search interest@17#. In this respect the present work contrib
utes in describing some examples of these solutions for
symmetrical vesicles of spherical topology. The analy
5834 © 1997 The American Physical Society
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presented also forms the proper basis for an understandin
the formation of vesicle shapes that were observed in exp
ments on vesicles containing microtubule assemblies e
gating along the vesicle axis and thus exerting force on
poles@18#.

In this article the relevant contributions to the membra
elastic energy are presented first. Then the theoretical pr
dure is described for the determination of axisymmetri
shapes of bilayer vesicles under the effect of the axial fo
with special emphasis on the behavior of the vesicle at
poles. It is then shown separately how to determine ves
shapes with maximal length at a given vesicle volume, me
brane area, and difference between the areas of memb
layers. The theory is used to analyze the behavior of the c
of axisymmetrical prolate cigarlike shapes involving equa
rial mirror symmetry.

II. DETERMINATION OF STATIONARY SHAPES
OF AXIALLY STRAINED VESICLES

It is commonly believed that the shape of a vesicle o
simple cell such as an erythrocyte is determined by the m
mum of the elastic energy of the membrane. We analyze
shape of a phospholipid vesicle under the assumption tha
membrane area (A) does not change. Thus the elastic ene
of a closed symmetrical bilayer composed of layers of
same composition is the sum of only two terms (WRE
1Wb) @12#, i.e., ~a! the relative expansivity term

WRE5
kr

2Ah2
~DA2DA0!

2, ~1!

wherekr is the nonlocal bending modulus,DA is the differ-
ence between the areas of the outer and the inner monola
in the deformed state and is equal toh*(c11c2)dA, with
c1 andc2 the principal curvatures andh the distance betwee
the neutral surfaces of the outer and the inner monolayer,
DA0 is the corresponding equilibrium area difference, a
~b! the bending energy term

Wb5
1

2
kcE ~c11c2!

2dA, ~2!

wherekc is the bending modulus. The spontaneous curva
in the bending energy term@19# was taken to be zero becau
we are considering a symmetrical bilayer membrane. A
we only consider vesicles with spherical topology and the
fore the contribution of the Gaussian bending term to
bending energy is constant and is thus omitted.

The minima of elastic energy correspond to station
shapes of the vesicle, so the problem is to find the extre
values of the membrane elastic energy. The shape of a
cid vesicle is obtained from the minimum ofWRE1Wb ,
where the membrane area is fixed. During the minimizat
procedure we also take into account that the volume of
vesicle (V) is fixed because of the incompressibility of wat
and the low water transmembrane transport. The constra
in volume and area can be incorporated in the energy m
mization by introducing the Lagrange multipliersm and l,
which represent the pressure difference across the memb
and the lateral tension. We wish to determine the axisy
of
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metrical shape of a vesicle that is strained between two p
forces acting in opposite directions at the vesicle poles.
the additional constraint that is important for the shape of
vesicle is the distance between the poles (Z0). This distance
can be kept constant by introducing the Lagrange multip
f , which represents the axial force. Thus the shape equa
for the vesicle is obtained by minimizing the functional

G5WRE1Wb2mV2lA2 f Z0 . ~3!

Because of recently debated controversies regarding the
vation of the shape equation for an axisymmetric vesicle~cf.
@14,15,17,20#!, the procedure for obtaining it from Eq.~3! is
outlined in the following in some detail.

The expression for the membrane bending energy@Eq.
~2!# for a given vesicle shape does not depend on the ves
size. Due to this scale invariance, in the forthcoming mi
mization analysis the unit of length is chosen in such a w
that the relative membrane area equals unity (a5A/4pR0

2

51); thusR05AA/4p is the radius of the sphere with th
membrane areaA. Then the relative vesicle volume is de
fined asv5V/ 43pR0

3, the relative difference between the a
eas of the two membrane monolayers is defined asDa
5DA/8phR0 , where 8phR0 is the relative difference be
tween the areas of the two membrane monolayers for
sphere, andz05Z0 /R0 is the distance between the poles
relative units.

It is also appropriate to measure the relative expansi
term, the membrane bending energy, and the functionaG
relative to the bending energy of the sphere (8pkc): wRE
5WRE/8pkc , wb5Wb/8pkc , andg5G/8pkc . Thus

wRE5
kr
kc

~Da2Da0!
2, ~4!

whereDa05DA0/8phR0 is the equilibrium relative area dif
ference. The functional@Eq. ~3!# in the dimensionless form
then reads

g5wRE1wb2Mv2La2Fz0 , ~5!

where the new Lagrange multipliersM , L, andF are related
to m, l, and f

M5
R0
3

6kc
m, L5

R0
2

2kc
l, F5

R0

8pkc
f . ~6!

It is convenient to minimize the functionalg separately
with respect toDa and for a givenDa with respect to the
vesicle shape. The minimization of functionalg with respect
to Da is performed as follows. At equilibrium the partia
derivative of the functionalg with respect to the relative are
difference equals zero. This requirement leads to

]~wb1wRE!

]Da U
eq

5
]wb

]DaU
eq

1
dwRE

dDa U
eq

50, ~7!

where the fact thatwRE depends only onDa is used. By
considering the equation for the relative expansivity ene
@Eq. ~4!# one immediately obtains the equation
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]wb

]DaU
eq

522
kr
kc

~Da2Da0!, ~8!

which represents the condition for equilibrium. This equili
rium condition @Eq. ~8!# is the same as for the case of n
axial force@21,22#.

The variation of the functionalg with respect to the
vesicle shape is performed by defining as a new varia
N, the partial derivative of the relative bending energy w
respect to the relative area difference (N5]wb /]Daueq).
From Eq.~7! it follows thatN represents the relative later
tension between the monolayers:

N52
dwRE

dDa U
eq

. ~9!

Because the relative expansivity term (wRE) depends only on
the relative area difference (Da), the arbitrary variation of
the relative expansivity term also depends only on the va
tion of the relative area difference (dwRE5dDadwRE/
dDaueq). After using Eq.~9! the variation of the relative
expansivity term (dwRE) reads2NdDa.

An axisymmetrical surface can be conveniently para
etrized in relative units by the coordinatesr (s) and z(s)
@20#, wherer is the distance between the symmetry axis a
a certain point on the contour,z is the position of this point
along the symmetry axis, ands is the arclength along the
contour. The angle of the contourc(s) is defined through the
equation tanc5dz/dr, so the coordinatesr andz depend on
the anglec through the equationsṙ5cosc and ż5sinc,
where the overdot denotes the derivative with respect to
arclengths. The anglec and coordinater are taken as two
independent variables and the restriction for the geometr
relation between them is considered by a new Lagrange m
tiplier G(s), which represents the component of the tra
verse shear force@11# in the radial direction. The variation o
the functionaly can then be expressed for an axisymmetri
vesicle as

dg5dE
0

s*
L ds, ~10!

whereL is the Lagrange function

L5
r

8 S sincr 1ċ D 22M
3r 2sinc

4
2L

r

2
2N

sinc1ċr

4

2F sinc1G~ ṙ2cosc! ~11!

ands* is the length of the contour. The bending energy te
in the functional@Eq. ~10!# @wb5

1
8*0

s* r (sinc/r1ċ)2ds] in-
cludes the principal curvatures along the parallels (sinc/r)
and the meridians (ċ). The geometrical parameters of th

vesicle are given by integrals:v5 3
4*0

s* r 2sinc ds is the

relative volume of the vesicle,a5 1
2*0

s* r ds is the relative

area of the vesicle,Da5 1
4*0

s* r (sinc/r1ċ)ds is the relative

area difference, andz05*0
s* sinc ds is the distance betwee

the poles, respectively.
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Because the variation of the functional@Eq. ~10!# with
respect to all independent variables along the contour ha
vanish (dg50), one obtains differential equations

c̈r5
ṙ sinc

r
2ċ ṙ23Mr 2cosc24F cosc14G sinc,

~12!

Ġ5
1

8 S ċ22
sin2c

r 2 D2
3Mr sinc

2
2
L

2
2
Nċ

4
, ~13!

ṙ5cosc , ~14!

and conditions

Hdsu0
s*50, ~15!

1

4
~r ċ1sinc2Nr !dcu0

s*50, ~16!

Gdr u0
s*50, ~17!

where

H5
r

8 S ċ22
sin2c

r 2 D1
3Mr 2sinc

4
1
Lr

2
1
N sinc

4

1G cosc1F sinc ~18!

is the Hamiltonian function. The contour of a vesicle is o
tained by solving Eqs.~12!–~14!. Equations~15!–~17! rep-
resent the boundary conditions that have to be fulfilled at
beginning (s50) and at the end (s5s* ) of the contour@20#.
Because the length (s* ) is not fixed (dsus*Þ0) andH is
constant, Eq.~15! shows thatH50. Equation~16! shows
that c50 on the axis. This means that the vesicles
smooth at the poles. Because the coordinater equals zero at
the beginning and at the end of the contour@r (0)5r (s* )
50], Eq. ~17! is automatically fulfilled on the axis.

In order to solve the differential equations the behavior
the contour, i.e., the dependence of the anglec on r close to
the symmetry axis, has to be investigated. For this it is c
venient to eliminateG ands from the differential equations
@20#. This is done by first rewriting Eq.~12! as G
5G(c̈,ċ,c,r ) and then inserting the expression obtained
G into expression~18! for H50, which gives the equation o
the contour in the formc̈5c̈(ċ,c,r ). Then the arclength
s is eliminated by considering Eq.~14!, and the shape equa
tion appears in the form

c9cosc2c82sinc

5
r

2 cos2c Fsincr S sin2cr 2
2c82cos2c D26M

24L
sinc

r
22N

sin2c

r 2
28F

1

r 2G2S c8cosc

r
2
sinc

r 2 D ,
~19!

where the prime denotes the derivative with respect to
coordinater . @The same equation forN50 was presented by
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Zheng and Liu@23#, who showed that Eq.~19! is also the
first integral of the general shape equation@16# for the axi-
symmetrical case@15# with F an integration constant.# In the
limit r→0 the solution of Eq.~19! has the form@14#

c5~22F lnr1B!r , ~20!

whereB is a constant. In the absence of the axial force
constantB represents the value of the two principal curv
tures on the vesicle poles@8#. In the procedure for obtaining
the vesicle shape the values ofM , L, N, F, andB are found
to fulfill the conditions of the chosenv, a, Da0 , andz0 and
to fulfill the condition that the transverse shear force~G! at
the equator equals zero due to the mirror symmetry of
vesicle shape.

III. LIMITING SHAPES

The question of the maximal length of a vesicle w
given volume, area, and area difference may be posed
dimensionless representation, this means that we are loo
for the shape with the extremal distance between the p
(z0) under the conditions that the relative area (a) equals
one and that the relative volume (v) and the relative area
difference (Da) are fixed. The maximal distance correspon
to an infinitely large axial force. We thus study the dime
sionless functional

g̃5z02M̃v2L̃a2ÑDa, ~21!

where the Lagrange multipliersM̃ ,L̃,Ñ are

M̃5
dz0
dv

, L̃5
dz0
da

, Ñ5
dz0
dDa

. ~22!

The functionalg̃ can be expressed for an axisymmetric
vesicle as

g̃5E
0

s*
L̃ ds, ~23!

whereL̃ is the Lagrange function

L̃5sinc2M̃
3r 2sinc

4
2L̃

r

2
2Ñ

sinc1ċr

4
1G̃~ ṙ2cosc!.

~24!

The requirement for the geometrical relation betweenc in
r is considered by the Lagrange multiplierG̃.

Because the variation of the functional@Eq. ~23!# at equi-
librium has to be zero, we obtain the equations

cosc2 3
4 M̃ r 2cosc1G̃ sinc50, ~25!

G̃
˙

1
3M̃ r sinc

2
1
L̃

2
1
Ñċ

4
50, ~26!

ṙ5cosc. ~27!

and the boundary conditionsH̃dsu0
s*50, (Ñr /4)dcu0

s*50,

and G̃dr u0
s*50, where
e
-

e

In
ng
es

s
-

l

H̃52sinc1
3M̃ r 2sinc

4
1
L̃r

2
1
Ñ sinc

4
1G̃ cosc

~28!

is the Hamiltonian function for this case. BecauseL̃ does not
explicitly depend on the arclengths, the Hamiltonian func-
tion is constant. Since the variation ofg̃ with respect to
variation of the contour length at the two end points m
vanish, one obtains the conditionH̃(s* )50. Because the
Hamiltonian function is constant along the contour, it fo
lows thatH̃50.

To simplify the numerical calculations, we can obtain
equation in a form without the Lagrange multiplierG̃. First
Eq. ~25! is rewritten asG̃5G̃(c,r ). This expression forG̃
gives, together withH̃50 @Eq. ~28!#,

3M̃ r 212L̃r sinc1Ñ sin2c2450. ~29!

The contour of a limiting vesicle is obtained by solving E
~29!. On the poles, wherer50, one obtains

sin2c05
4

Ñ
, ~30!

wherec0 is the angle of the contour on the symmetry ax
Equation~30! shows that the limiting vesicle shapes are n
smooth at the poles andÑ must be greater than or equal to
because there are no solutions that begin on the axis ifÑ is
lower than 4. Equation~30! also shows that the contour o
the limiting vesicle shape begins with the same anglec0 on
both poles. It can easily be seen from Eq.~25! that G̃ is zero
on the equator, as it has to be because of the mirror sym
try of the limiting vesicle shapes.

IV. RESULTS

The results presented are restricted to vesicles belon
to a class of axisymmetrical prolate cigarlike shapes invo
ing equatorial mirror symmetry. A systematic description
vesicle shapes under the effect of an axial force for ot
shape classes will be presented separately.

An increase in axial force in general causes an elonga
of the vesicle and a change of the relative membrane a
difference. Thus it is practical to represent vesicles of a giv
relative volume in a two-dimensional phase diagram a
function of the distance between the poles and the rela
area difference~z0-Da phase diagram!. In Fig. 1 the region
of the z0-Da phase diagram is shown for a vesicle with
relative volume of 0.95 in the range of relative area diffe
ences where axisymmetrical prolate shapes with equato
mirror symmetry exist in the absence of the axial force. Ea
point from this region is characterized by the correspond
Lagrange multipliersM ,L,F and the relative lateral tensio
between the monolayers (N). The region is bounded from
below by the curve~denoted byP! representing the lowes
bending energy shapes of the prescribed symmetry when
axial force is equal to zero. These cigar class shapes e
within the interval of values of the area difference (Da),
where the shape with the smallest area difference is c
posed of a cylinder with two hemispherical caps~shapeg in
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Fig. 2! and the shape with the largest area difference is
combination of one large and two small spheres~shapej !.
Two intermediate zero force shapes are also shown in Fi
~shapesh and i !. The shape denoted byh corresponds to the
absolute minimum of bending energy. The parameters
these shapes are given in Table I. The curveM in Fig. 1
represents the shapes corresponding to an infinite force.
v50.95 the infinite force shape atDa51.0219 coincides
with the shape forF50 ~shapeg!, as this shape cannot b
deformed. At higherDa values the angle of the contour o
the symmetry axis (c0) increases~shapea!, until at Dab
51.1134 it reaches the valuep/2 ~shapeb! whereÑ equals
4 ~Table II!. The limiting shapes at higherDa values differ
from the shape atDab by having on the axis on both sides a
infinitesimally thin cylinder of length 2(Da2Dab) ~e.g.,
shapec!. Namely, if Ñ54, the solution of Eq.~29! for the
infinitely thin cylinder is

r50, c5
p

2
. ~31!

The infinitely thin cylinder has no volume and no area.
contributes only to the relative area difference and to

FIG. 1. Thez0-Da phase diagram for prolate axisymmetric
shapes with equatorial mirror symmetry strained by an axial fo
for a vesicle with the relative volumev50.95. The curve desig
nated byP shows the dependence of the distance between the p
in relative units (z0) on the relative area difference (Da) for the
prolate vesicles of the cigar class in the absence of the force. S
representatives of vesicles~denoted byg, h, i , and j ! that belong to
this curve are depicted in Fig. 2. The curve designated byM shows
the dependence of the maximal distance between the poles o
relative area difference for the prolate vesicles. Some limit
shapes~denoted byg, a, b, andc! from this curve are depicted in
Fig. 2. The dotted line is atDab51.1134. Curves designated b
Q0 , Q4 , Q40, andQ400 show the distance between the poles a
function of the relative area difference for the vesicles with the ra
between the nonlocal bending modulus and the bending mod
kr /kc50, 4, 40, and 400. The curvesQ0 , Q4 , Q40, andQ400 are
obtained by solving Eqs.~12!–~14! and ~8! for different values of
the axial force where the equilibrium area difference (Da0) is
1.0221. They begin on curveP ~shapeh!, whereDa5Da0 , and
they end where numerical problems appear. Some examples o
shapes that are on the curve designated byQ4 ~denoted byd, e, and
f ! are depicted in Fig. 2.
e

2

of

or

t
e

length of the limiting vesicle shape wheredz0 /dDa54. The
result presented can be considered as the upper limit~valid
exactly for h/R0→0! for the distance between the pole
(z0) at a given relative area difference (Da) @24#. The pa-
rameters for different limiting shapes are given in Table

The limiting shapes~curveM ! of vesicles represent th
limit for an infinitely large axial force applied on the prola
vesicles~curve P! by keeping the relative area differenc
constant (kr /kc5`). As an example of the effect of th
axial force one can note the shapes along the dotted lin
Fig. 1 ~shapesi , e, andb!, which have the same area diffe
ence. It can be seen that the distance between the pole
these shapes increases on increasing the relative axial f
Shapee is similar to shapeb except close to the poles.

For phospholipid vesicles the estimated ratio between
nonlocal and local bending moduli is finite@10# and therefore
it is of interest to follow the vesicle shape changes by tak
into consideration that the elastic energy is the sum of

e
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me

the
g

a
o
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the

FIG. 2. Characteristic examples of axisymmetrical shapes w
equatorial mirror symmetry at relative volumev50.95. The posi-
tion of each of these shapes in thez0-Da phase diagram is indicate
in Fig. 1. The vesicle rotational symmetry axis is in the vertic
direction. The shapes denoted byg, h, i, and j correspond to pro-
late vesicles of the cigar class in the absence of the force.
shapes denoted byd, e, and f are representatives of the vesicle
that lie in Fig. 1 on the curve designated byQ4 . The contours of the
vesicles denoted byd, e, f , g, h, i , and j are obtained by solving
the system of differential equations@Eqs. ~12!–~14!#. The param-
eters of these vesicles are given in Table I. The contours of
vesicles denoted bya, b, andc are obtained by solving Eq.~29!
and the vesicles with these shapes are characterized in Table II
shapesb, e, and i are atDab51.1134.
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TABLE I. Properties of the vesicles that are presented in Fig. 2, whereDa is the relative area difference between the two membr
monolayers,z0 is the distance between the poles in relative units,r e is the relative radius of the vesicle on the equator,B is the parameter
that denotes the behavior of the contour close to the pole@Eq. ~20!#, M is the relative pressure difference across the membrane,L is the
relative lateral tension of the membrane,N is the relative lateral tension between the monolayers, andF is the axial force in relative units

Shape Da z0 r e B M L N F

d 1.0670 3.106 0.908 28.364 43.665 268.917 20.359 4.433
e 1.1134 3.240 0.918 27.278 52.241 281.560 20.730 4.644
f 1.1668 3.387 0.926 29.565 65.539 2101.497 21.158 5.184
g 1.0219 2.465 0.811 1.233 2` ` 2` 0
h 1.0221 2.593 0.829 1.490 21.882 2.682 0 0
i 1.1134 2.901 0.973 9.078 9.558 217.866 7.629 0
j 1.2535 2.507 0.981 7.348 20.7 234.9 8.35 0
he

e
ua
th

fo

ur

o
th
lle
e
n

t

r
in
is

ca
-
e

h

-

ol-

dif-
ative
rce
nge
ve
c-

t

in
uct
local and nonlocal bending terms@Eqs. ~2! and ~1!#. As an
example we look for the effect of the axial force on t
vesicle with the equilibrium relative area difference (Da0),
corresponding to the shapeh in Fig. 1, i.e., the shape with
the absolute bending energy minimum in the case of a z
axial force. For this case the relative area difference eq
the equilibrium relative area difference. Figure 1 shows
curves~Q0 , Q4 , Q40, andQ400! in thez0-Da phase diagram
of shape changes due to the increase of axial force for
different values of the ratiokr /kc ~0, 4, 40, and 400!. Some
examples of the corresponding shapes that lie on the c
for kr /kc54 are also shown in Fig. 2~shapesh, d, e, and
f !. The tubular endings at the poles of shapese and f show
the formation of tethers.

In Fig. 3 the dependence of the distance between the p
on the applied axial force when straining the vesicle with
initial shapeh is presented. It can be noted that at sma
values of the ratiokr /kc there is a steep increase in th
distance between the poles in the region of the shape cha
where the vesicle begins to form the tether~i.e., from shape
d to shapee for kr /kc54!. For the relative volume 0.95 a
values where the ratiokr /kc is smaller than the critical ratio
(kr /kc)c51.89, a discontinuous transition into tether confo
mation is predicted. The value of the critical axial force
relative units (Fc), which corresponds to this critical ratio,
equal to 4.47.

The value of the critical ratio between nonlocal and lo
bending moduli@(kr /kc)c# and the value of the correspond
ing critical axial force (Fc) depend on the relative volum
~Fig. 4!. It may be seen from Fig. 4~a! that at higher relative
volumes a discontinuous shape transition occurs at hig
values of the ratiokr /kc . It can also be seen@Fig. 4~b!# that
the critical axial force (Fc) increases with the relative vol
ume. The dependence of (kr /kc)c onv shows that there is no
ro
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ur
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discontinuous shape transition below a certain relative v
ume.

The Lagrange multipliers that represent the pressure
ference across the membrane, the lateral tension, the rel
lateral tension between the monolayers, and the axial fo
steeply increase when a tether is elongated. If the Lagra
multipliers are sufficiently large, an estimate of the relati
radius of the tether (r t) could be given, because on the se
tion of the tether wherec'p/2 the first derivative of the
angle c with respect to the arclengths is almost zero
(ċ'0). One obtains from Eq.~18!

2
1

8r t
1
3Mr t

2

4
1
Lr t
2

1
N

4
1F50 ~32!

and from Eq.~13!

1

8r t
2 1

3Mr t
2

1
L

2
50. ~33!

After eliminatingL from Eqs.~32! and ~33! we have

23Mr t
3211Nrt14Fr t50. ~34!

For the shape denoted bye the product 3Mr t
3 is equal to

0.039, the productNrt is equal to20.046, and the produc
4Fr t is equal to 1.17. The productMr t

3 decreases with in-
creasing relative axial force for the vesicle with the certa
ratio kr /kc . Because for the elongated tether the prod
Mr t

3 is much smaller thanNrt14Fr t21, after using Eq.~8!
the radius of the tether (Rt5R0r t) can be approximated in
dimensional form by the equation
o
nd
TABLE II. Properties of the limiting vesicles that are presented in Fig. 2, whereDa is the relative area difference between the tw
membrane monolayers,z0 is the distance between the poles in relative units,r e is the relative radius of the vesicle on the equator, a
c0 is the angle of the contour on the poles. The Lagrange multipliersM̃ ,L̃,Ñ are defined through Eqs.~22!.

Shape Da z0 r e c0 M̃ L̃ Ñ

a 1.0670 3.166 0.895 1.243 26.486 8.444 4.463
b 1.1134 3.357 0.898 p/2 27.050 9.498 4
c 1.2535 3.917 0.898 p/2 27.050 9.498 4
g 1.0219 2.465 0.811 0 ` 2` `



the
cal

di-
to
ho-
of
een

. A
of

ror
icle
this
oints
ial
the
ves
en-
r
rce
ally

hape
re-
nd
us
d-

ef-
ers
xial
the
and,
the
the
for
duli
e
w

ole

ch
tak-
he
ost
een
ant.
er
nd a
e
ain
rce

d
e
in

F
n

ti

t l
e
e

5840 55BOJAN BOŽIČ, SAŠA SVETINA, AND BOŠTJAN ŽEKŠ
FIG. 3. Distance between the poles in relative units (z0) as a
function of the relative axial force (F) where the curves designate
by Q0 , Q4 , Q40, Q400, andQ` show the dependences for fiv
different values of the ratio between the nonlocal and local bend
moduli ~kr /kc50, 4, 40, 400, and̀ !. The equilibrium relative area
difference of the two membrane monolayers (Da0) is 1.0221. The
curves forkr /kc50, 4, and 40 are the most inclined close toz0
53.2, where the tether appears. The lettersh, d, e, and f indicate
the positions of the vesicle shapes that are depicted in Fig. 2.
kr /kc5` ~curve designated byQ`! the maximal distance betwee
the poles exists atz052.630~dotted line!.

FIG. 4. ~a! Dependence of the critical ratio between the elas
constants@(kr /kc)c# on the relative vesicle volume (v). There is a
discontinuous transition in vesicle shape for the vesicles tha
below the curve. The curve ends at relative volume 0.966, wh
numerical problems appear.~b! Corresponding dependence of th
critical axial force (Fc).
2pkc
Rt

1
2pkr~DA2DA0!

Ah
2 f50. ~35!

This equation predicts the same radius for the tether as
equation for the tether equilibrium of the simple geometri
model ~Eq. 21 of Ref.@12#!.

V. DISCUSSION

The variety of vesicle shapes obtained under the con
tions of the applied axial force is discussed first in relation
the variety of shapes of freely suspended flaccid phosp
lipid vesicles or structurally related cells. A large variety
shapes within different symmetry classes has already b
found in the latter case@7,8,25#. Under the influence of the
external axial force the shape variety greatly increases
demonstration of this is the phase diagram for the class
prolate axisymmetrical shapes exhibiting equatorial mir
symmetry, as a function of distance between the ves
poles and the area difference presented in Fig. 1. In
phase diagram the shapes for the case of zero force are p
on a curve~curveP!, whereas the shapes under applied ax
forces correspond to the points within a certain area of
z0-Da phase diagram bounded on two sides by the cur
P andM . In both cases the shapes are solutions of the g
eralized shape equation@16#; however, these solutions diffe
in their behavior at the poles. In the case of a nonzero fo
the principal curvatures at the poles depend logarithmic
on the distance from the axis@see @14# and Eq. ~20!#,
whereas in the case of a freely suspended vesicle the s
behavior in the poles is normal, giving rise to the requi
ment that the two principal curvatures are always finite a
equal@8#. The different extent of the shape variety can th
be directly related to the different restrictions in the boun
ary condition on the axis.

By following up the shape transformations under the
fect of the axial force it is possible to envisage why teth
are formed. The vesicle shapes under the effect of the a
force are governed, on the one hand, by the tendency of
system to be as elongated as possible and, on the other h
by the opposing tendencies due to the constraints on
constant vesicle area and volume. The dependence of
distance between the poles on the axial force determined
a reasonable value of the ratio between the bending mo
~curveQ4 in Fig. 3! reveals two regimes with regard to th
response of the vesicle to the axial force. At relatively lo
values of the force~before reaching shaped! a vesicle can
adjust to the strain by changing its shape over its wh
surface, whereas at larger forces~after reaching shapee! the
vesicle can further adapt only by forming tethers, by whi
the distance between the poles can increase the most by
ing into the tethers the minimum possible amount of t
vesicle interior and membrane area. A tether is an alm
cylindrical section of the vesicle where the distance betw
the membrane and the symmetry axis is practically const

After a tetherlike conformation is established, a furth
increase of axial force causes elongation of the tethers a
decrease in their radii@Eq. ~34!#. The longer the tethers, th
more membrane material than water drawn from the m
vesicle body to such thin tethers. Thus, for a large axial fo
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the pressure difference across the membrane, the latera
sion, and the relative lateral tension between the monola
increase very much. Because the Lagrange multipliersF,
M , L, andN steeply increase, the solutions of the differe
tial equation for the vesicle shapes@Eq. ~19!# in the limit
F,M ,L,N→` correspond to solutions of the differenti
equation for the limiting vesicle shapes@Eq. ~29!#, and the
shape of the vesicle can be determined by integrating
equation. Consequently, the shape of the main body o
vesicle is expected to become similar to the limiting sha
b ~Figs. 1 and 2! throughout the whole region of space whe
tethers are formed. This notion can be visualized by comp
ing shapese and b in Fig. 2. However, at larger tethe
lengths, the tether fraction of the membrane area may
come significant relative to the total membrane area, me
ing that effectively the shape of the main body would tend
assume the shapeb corresponding to a higher relative vo
ume. The limiting shapesb for different relative volumes are
shown in Fig. 5. It can be visualized that at high enou
tether lengths the shape of the vesicle main body would
tain a spherical aspect. The radius of the vesicle on the e
tor increases on increasing the axial force~cf. shapese and
f in Table II!. At an infinitely large axial force the radius o
the main vesicle body on the equator is equal to the radiu
the equator of the corresponding shapeb.

For a large axial force the relative area difference is p
portional to the distance between the poles since the co
bution of the membrane on the tether section to the a
difference depends only on the tether length. Becaus
large axial forces there are only slight changes in the sh
of the main vesicle body, also the membrane area differe
of the main vesicle body and the length of the main ves
body are almost constant. Thus, when the distance betw
the poles increases by the lengthening of the tethers, the
area difference is proportional to the distance between
poles. The derivative of the relative area difference with

FIG. 5. Examples of the limiting shapesb for the different rela-
tive volumesv50.91, 0.95, 0.99, and 0.999. These shapes co
spond to the limiting vesicle shapes of the main vesicle body
infinitely large axial force. The rotational symmetry axis is in t
vertical direction. The contours of the main vesicle bodies are
tained by solving Eq.~29! for Ñ54.
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spect to distance between the poles in relative units eq
1
4 . The value of this derivative, which is the same as for
limiting vesicle shape with infinitely thin tethers~curveM in
Fig. 1 for Da.Dab!, does not depend on the ratiokr /kc .
This means that at large axial forces the lines that repre
the dependence of the distance between the poles on
relative area difference for different ratioskr /kc are parallel
to the line of the corresponding dependence for the limit
shape. The higher the ratiokr /kc , the closer the line for the
dependence of the distance between the poles on the rel
area difference to the line for the corresponding depende
of the limiting shape. For any finite ratiokr /kc the limiting
shape with infinitely thin tethers is never reached because
bending energy of such tethers is infinitely large.

When tether conformation is established, vesicle leng
ening is essentially resisted by the contributions to the ela
energy of the tether sections of the vesicle. This was a b
assumption in the approximate analysis of the tether pul
experiment@12,10,11#, where the shape of the tether wa
approximated by a cylinder. The present analysis shows
the magnitudes of the axial forces are related to the te
radius in the same manner@Eq. ~35!# as was already pre
dicted on the basis of simple tether models@12#. This result
thus justifies the use of simple geometrical tether model
the analysis of equilibrium tether experiments.

In this work the question of the stability of the calculate
shapes of the treated shape class was not addressed sy
atically. It was tacitly assumed that the shapes calculate
given relative volume, relative area difference, and dista
between the poles are the lowest-energy shapes of the tre
symmetry, which is a generalization of the case of zero
ternal force. The problem of stability is a relevant problem
view of the fact that in the case of zero force the cigar cl
shapes forDa values larger than 1.0222 are unstable, hav
larger energies than the shapes with no equatorial mi
symmetry@25,26#. However, at least some of the shapes w
mirror equatorial symmetry are also relevant at nonz
force, which is substantiated by observations of axia
strained vesicles@18#. It is to be pointed out that the prese
analysis revealed a different type of instability within th
treated class, i.e., the regions of instability at smaller ra
of kr /kc , as evidenced by the result presented in Fig. 3.

The material constant that essentially affects the beha
of axially strained phospholipid vesicles appears to be
ratio between the nonlocal and local bending consta
kr /kc . The ratio kr /kc depends on the sort of lipid
and on the number of layers in the membrane. The ra
kr /kc obtained for a mixture of 1-stearoyl-2
oleoyl-phosphatidylcholine and 1-palmitoyl-2-oleoy
phosphatidylserine was approximately 3@10#. This value ap-
plies to unilamellar membranes. For multilamellar phosph
lipid vesicles the ratiokr /kc can be considerably larger tha
for a bilayer@27#.

At sufficiently low values of the ratiokr /kc a definite
change into the tether regime occurs in a small interval
forces~Fig. 3!. It is of particular interest that there is a dis
continuous transition of the shape from the pretether to
tether conformation below the critical ratio ofkr /kc , which
is of the same order of magnitude as the measured v
@10#. The critical ratiokr /kc is smaller for smaller relative
volumes ~Fig. 4! meaning that more flaccid vesicles ca
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adapt to the force by shape changes over their whole sur
more easily. The critical ratiokr /kc increases with increas
ing relative volume of the vesicle, but also the correspond
relative forces at which the discontinuous transitions oc
are larger. The predicted dependence of the critical r
kr /kc on relative volume could provide a sensitive meth
for the determination of this material parameter, consist
of measuring the dependence of the vesicle length on
force at different relative vesicle volumes. For instance, fr
the results presented in Fig. 4 for the ratiokr /kc54, the
discontinuous transition of the vesicle shape is expecte
relative volumes larger than 0.962. The relative volume
which the discontinuities in this dependence appear wo
provide for the ratiokr /kc , whereas from the correspondin
force one could determinekc .
Jr
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The results presented may have relevance in some cel
processes. The force exerted by a single kinesin molecu
approximately 5 pN@28#. The forces needed for pulling th
tether are of the same order of magnitude, which indica
that the formation of tubular cellular systems may actually
the natural consequence of the forces exerted by cytoske
systems. An estimation for the minimal force needed for f
mation of a tether can be given from the value of the prod
Fr t for the shape denoted bye ~Fig. 2!, where the micro-
tubes appear. Because for this shape the value for the pro
4Fr t is approximately 1, the force needed for tether form
tion can be given by the equation in dimensional formf
52pkc /Rt . For kc'10219 J the radius of the tether, fo
forces (f ) between 25 and 5 pN, ranges between 30 and
nm.
tt.
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61, 963 ~1992!.
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